LearnOpenGL

Translation in progress of learnopengl.com.
git clone https://git.mtkn.jp/LearnOpenGL
Log | Files | Refs

Debugging.html (30057B)


      1     <h1 id="content-title">Debugging</h1>
      2 <h1 id="content-url" style='display:none;'>In-Practice/Debugging</h1>
      3 <p>
      4   Graphics programming can be a lot of fun, but it can also be a large source of frustration whenever something isn't rendering just right, or perhaps not even rendering at all! Seeing as most of what we do involves manipulating pixels, it can be difficult to figure out the cause of error whenever something doesn't work the way it's supposed to. Debugging these kinds of <em>visual</em> errors is different than what you're used to when debugging errors on the CPU. We have no console to output text to, no breakpoints to set on GLSL code, and no way of easily checking the state of GPU execution.
      5 </p>
      6 
      7 <p>
      8   In this chapter we'll look into several techniques and tricks of debugging your OpenGL program. Debugging in OpenGL is not too difficult to do and getting a grasp of its techniques definitely pays out in the long run.
      9 </p>
     10 
     11 <h2>glGetError()</h2>
     12 <p>
     13   The moment you incorrectly use OpenGL (like configuring a buffer without first binding any) it will take notice and generate one or more user error flags behind the scenes. We can query these error flags using a function named <fun>glGetError</fun> that checks the error flag(s) set and returns an error value if OpenGL got misused:
     14 </p>
     15 
     16 <pre><code>
     17 GLenum glGetError();  
     18 </code></pre>
     19 
     20 <p>
     21   
     22   The moment <fun>glGetError</fun> is called, it returns either an error flag or no error at all. The error codes that <fun>glGetError</fun> can return are listed below:
     23 </p>
     24 
     25 <table>
     26   <tr>
     27     <th>Flag</th>
     28     <th>Code</th>
     29     <th>Description</th>
     30   </tr>
     31   <tr>
     32     <td><var>GL_NO_ERROR</var></td>
     33     <td>0</td>
     34     <td>No user error reported since the last call to <fun>glGetError</fun>.</td>
     35   </tr>  
     36   <tr>
     37     <td><var>GL_INVALID_ENUM</var></td>
     38     <td>1280</td>
     39     <td>Set when an enumeration parameter is not legal.</td>
     40   </tr>  
     41   <tr>
     42     <td><var>GL_INVALID_VALUE</var></td>
     43     <td>1281</td>
     44     <td>Set when a value parameter is not legal.</td>
     45   </tr>  
     46   <tr>
     47     <td><var>GL_INVALID_OPERATION</var></td>
     48     <td>1282</td>
     49     <td>Set when the state for a command is not legal for its given parameters.</td>
     50   </tr>  
     51   <tr>
     52     <td><var>GL_STACK_OVERFLOW</var></td>
     53     <td>1283</td>
     54     <td>Set when a stack pushing operation causes a stack overflow.</td>
     55   </tr>  
     56   <tr>
     57     <td><var>GL_STACK_UNDERFLOW</var></td>
     58     <td>1284</td>
     59     <td>Set when a stack popping operation occurs while the stack is at its lowest point.</td>
     60   </tr>  
     61   <tr>
     62     <td><var>GL_OUT_OF_MEMORY</var></td>
     63     <td>1285</td>
     64     <td>Set when a memory allocation operation cannot allocate (enough) memory.</td>
     65   </tr>  
     66   <tr>
     67     <td><var>GL_INVALID_FRAMEBUFFER_OPERATION</var></td>
     68     <td>1286</td>
     69     <td>Set when reading or writing to a framebuffer that is not complete.</td>
     70   </tr>  
     71 </table>
     72 
     73 <p>
     74   Within OpenGL's function documentation you can always find the error codes a function generates the moment it is incorrectly used. For instance, if you take a look at the documentation of <a href="http://docs.gl/gl3/glBindTextur%65" target="_blank"><function id='48'>glBindTexture</function></a> function, you can find all the user error codes it could generate under the <em>Errors</em> section.
     75 </p>
     76 
     77 <p>
     78   The moment an error flag is set, no other error flags will be reported. Furthermore, the moment <fun>glGetError</fun> is called it clears all error flags (or only one if on a distributed system, see note below). This means that if you call <fun>glGetError</fun> once at the end of each frame and it returns an error, you can't conclude this was the only error, and the source of the error could've been anywhere in the frame.
     79 </p>
     80 
     81 <note>
     82   Note that when OpenGL runs distributedly like frequently found on X11 systems, other user error codes can still be generated as long as they have different error codes. Calling <fun>glGetError</fun> then only resets one of the error code flags instead of all of them. Because of this, it is recommended to call <fun>glGetError</fun> inside a loop.
     83 </note>
     84 
     85 <pre><code>
     86 <function id='48'>glBindTexture</function>(GL_TEXTURE_2D, tex);
     87 std::cout &lt;&lt; glGetError() &lt;&lt; std::endl; // returns 0 (no error)
     88   
     89 <function id='52'>glTexImage2D</function>(GL_TEXTURE_3D, 0, GL_RGB, 512, 512, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
     90 std::cout &lt;&lt; glGetError() &lt;&lt; std::endl; // returns 1280 (invalid enum)
     91   
     92 <function id='50'>glGenTextures</function>(-5, textures);
     93 std::cout &lt;&lt; glGetError() &lt;&lt; std::endl; // returns 1281 (invalid value)
     94   
     95 std::cout &lt;&lt; glGetError() &lt;&lt; std::endl; // returns 0 (no error)
     96 </code></pre>
     97 
     98 <p>
     99   The great thing about <fun>glGetError</fun> is that it makes it relatively easy to pinpoint where any error may be and to validate the proper use of OpenGL. Let's say you get a black screen and you have no idea what's causing it: is the framebuffer not properly set? Did I forget to bind a texture? By calling <fun>glGetError</fun> all over your codebase, you can quickly catch the first place an OpenGL error starts showing up. 
    100 </p>
    101 
    102 <p>
    103   By default <fun>glGetError</fun> only prints error numbers, which isn't easy to understand unless you've memorized the error codes. It often makes sense to write a small helper function to easily print out the error strings together with where the error check function was called: 
    104 </p>
    105 
    106 <pre><code>
    107 GLenum glCheckError_(const char *file, int line)
    108 {
    109     GLenum errorCode;
    110     while ((errorCode = glGetError()) != GL_NO_ERROR)
    111     {
    112         std::string error;
    113         switch (errorCode)
    114         {
    115             case GL_INVALID_ENUM:                  error = "INVALID_ENUM"; break;
    116             case GL_INVALID_VALUE:                 error = "INVALID_VALUE"; break;
    117             case GL_INVALID_OPERATION:             error = "INVALID_OPERATION"; break;
    118             case GL_STACK_OVERFLOW:                error = "STACK_OVERFLOW"; break;
    119             case GL_STACK_UNDERFLOW:               error = "STACK_UNDERFLOW"; break;
    120             case GL_OUT_OF_MEMORY:                 error = "OUT_OF_MEMORY"; break;
    121             case GL_INVALID_FRAMEBUFFER_OPERATION: error = "INVALID_FRAMEBUFFER_OPERATION"; break;
    122         }
    123         std::cout &lt;&lt; error &lt;&lt; " | " &lt;&lt; file &lt;&lt; " (" &lt;&lt; line &lt;&lt; ")" &lt;&lt; std::endl;
    124     }
    125     return errorCode;
    126 }
    127 #define glCheckError() glCheckError_(__FILE__, __LINE__) 
    128 </code></pre>
    129 
    130 <p>
    131   In case you're unaware of what the preprocessor directives <code>__FILE__</code> and <code>__LINE__</code> are: these variables get replaced during compile time with the respective file and line they were compiled in. If we decide to stick a large number of these <fun>glCheckError</fun> calls in our codebase it's helpful to more precisely know which <fun>glCheckError</fun> call returned the error.
    132 </p>
    133 
    134 <pre><code>
    135 <function id='32'>glBindBuffer</function>(GL_VERTEX_ARRAY, vbo);
    136 glCheckError(); 
    137 </code></pre>
    138 
    139 <p>
    140   This will give us the following output:
    141 </p>
    142 
    143 <img src="/img/in-practice/debugging_glgeterror.png" alt="Output of glGetError in OpenGL debugging."/>
    144 
    145 <p>
    146   <fun>glGetError</fun> doesn't help you too much as the information it returns is rather simple, but it does often help you catch typos or quickly pinpoint where in your code things went wrong; a simple but effective tool in your debugging toolkit.
    147 </p>
    148 
    149 
    150 <h2>Debug output</h2>
    151 <p>
    152   A less common, but more useful tool than <fun>glCheckError</fun> is an OpenGL extension called <def>debug output</def> that became part of core OpenGL since version 4.3. With the debug output extension, OpenGL itself will directly send an error or warning message to the user with a lot more details compared to <fun>glCheckError</fun>. Not only does it provide more information, it can also help you catch errors exactly where they occur by intelligently using a debugger.
    153 </p>
    154 
    155 <note>
    156   Debug output is core since OpenGL version 4.3, which means you'll find this functionality on any machine that runs OpenGL 4.3 or higher. If they're not available, its functionality can be queried from the <code>ARB_debug_output</code> or <code>AMD_debug_output</code> extension. Note that OS X does not seem to support debug output functionality (as gathered online).
    157 </note>
    158 
    159 <p>
    160   In order to start using debug output we have to request a debug output context from OpenGL at our initialization process. This process varies based on whatever windowing system you use; here we will discuss setting it up on GLFW, but you can find info on other systems in the additional resources at the end of the chapter.
    161 </p>
    162 
    163 <h3>Debug output in GLFW</h3>
    164 <p>
    165   Requesting a debug context in GLFW is surprisingly easy as all we have to do is pass a hint to GLFW that we'd like to have a debug output context. We have to do this before we call <fun><function id='20'>glfwCreateWindow</function></fun>:
    166 </p>
    167 
    168 <pre><code>
    169 <function id='18'>glfwWindowHint</function>(GLFW_OPENGL_DEBUG_CONTEXT, true);  
    170 </code></pre>
    171 
    172 <p>
    173   Once we've then initialized GLFW, we should have a debug context if we're using OpenGL version 4.3 or higher. If not, we have to take our chances and hope the system is still able to request a debug context. Otherwise we have to request debug output using its OpenGL extension(s). 
    174 </p>
    175 
    176 <note>
    177   Using OpenGL in debug context can be significantly slower compared to a non-debug context, so when working on optimizations or releasing your application you want to remove GLFW's debug request hint.
    178 </note>
    179   
    180 <p>
    181   To check if we successfully initialized a debug context we can query OpenGL:
    182 </p>
    183 
    184 <pre><code>
    185 int flags; glGetIntegerv(GL_CONTEXT_FLAGS, &flags);
    186 if (flags & GL_CONTEXT_FLAG_DEBUG_BIT)
    187 {
    188     // initialize debug output 
    189 }
    190 </code></pre>
    191 
    192 <p>
    193   The way debug output works is that we pass OpenGL an error logging function callback (similar to GLFW's input callbacks) and in the callback function we are free to process the OpenGL error data as we see fit; in our case we'll be displaying useful error data to the console. Below is the callback function prototype that OpenGL expects for debug output:
    194 </p>
    195 
    196 <pre><code>
    197 void APIENTRY glDebugOutput(GLenum source, GLenum type, unsigned int id, GLenum severity, 
    198                             GLsizei length, const char *message, const void *userParam);
    199 </code></pre>
    200   
    201 <p>
    202   Given the large set of data we have at our exposal, we can create a useful error printing tool like below:
    203 </p>
    204 
    205 <pre><code>
    206 void APIENTRY glDebugOutput(GLenum source, 
    207                             GLenum type, 
    208                             unsigned int id, 
    209                             GLenum severity, 
    210                             GLsizei length, 
    211                             const char *message, 
    212                             const void *userParam)
    213 {
    214     // ignore non-significant error/warning codes
    215     if(id == 131169 || id == 131185 || id == 131218 || id == 131204) return; 
    216 
    217     std::cout &lt;&lt; "---------------" &lt;&lt; std::endl;
    218     std::cout &lt;&lt; "Debug message (" &lt;&lt; id &lt;&lt; "): " &lt;&lt;  message &lt;&lt; std::endl;
    219 
    220     switch (source)
    221     {
    222         case GL_DEBUG_SOURCE_API:             std::cout &lt;&lt; "Source: API"; break;
    223         case GL_DEBUG_SOURCE_WINDOW_SYSTEM:   std::cout &lt;&lt; "Source: Window System"; break;
    224         case GL_DEBUG_SOURCE_SHADER_COMPILER: std::cout &lt;&lt; "Source: Shader Compiler"; break;
    225         case GL_DEBUG_SOURCE_THIRD_PARTY:     std::cout &lt;&lt; "Source: Third Party"; break;
    226         case GL_DEBUG_SOURCE_APPLICATION:     std::cout &lt;&lt; "Source: Application"; break;
    227         case GL_DEBUG_SOURCE_OTHER:           std::cout &lt;&lt; "Source: Other"; break;
    228     } std::cout &lt;&lt; std::endl;
    229 
    230     switch (type)
    231     {
    232         case GL_DEBUG_TYPE_ERROR:               std::cout &lt;&lt; "Type: Error"; break;
    233         case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR: std::cout &lt;&lt; "Type: Deprecated Behaviour"; break;
    234         case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR:  std::cout &lt;&lt; "Type: Undefined Behaviour"; break; 
    235         case GL_DEBUG_TYPE_PORTABILITY:         std::cout &lt;&lt; "Type: Portability"; break;
    236         case GL_DEBUG_TYPE_PERFORMANCE:         std::cout &lt;&lt; "Type: Performance"; break;
    237         case GL_DEBUG_TYPE_MARKER:              std::cout &lt;&lt; "Type: Marker"; break;
    238         case GL_DEBUG_TYPE_PUSH_GROUP:          std::cout &lt;&lt; "Type: Push Group"; break;
    239         case GL_DEBUG_TYPE_POP_GROUP:           std::cout &lt;&lt; "Type: Pop Group"; break;
    240         case GL_DEBUG_TYPE_OTHER:               std::cout &lt;&lt; "Type: Other"; break;
    241     } std::cout &lt;&lt; std::endl;
    242     
    243     switch (severity)
    244     {
    245         case GL_DEBUG_SEVERITY_HIGH:         std::cout &lt;&lt; "Severity: high"; break;
    246         case GL_DEBUG_SEVERITY_MEDIUM:       std::cout &lt;&lt; "Severity: medium"; break;
    247         case GL_DEBUG_SEVERITY_LOW:          std::cout &lt;&lt; "Severity: low"; break;
    248         case GL_DEBUG_SEVERITY_NOTIFICATION: std::cout &lt;&lt; "Severity: notification"; break;
    249     } std::cout &lt;&lt; std::endl;
    250     std::cout &lt;&lt; std::endl;
    251 }
    252 </code></pre>
    253 
    254 <p>
    255   Whenever debug output detects an OpenGL error, it will call this callback function and we'll be able to print out a large deal of information regarding the OpenGL error. Note that we ignore a few error codes that tend to not really display anything useful (like <code>131185</code> in NVidia drivers that tells us a buffer was successfully created).
    256 </p>
    257 
    258 <p>
    259   Now that we have the callback function it's time to initialize debug output:
    260 </p>
    261 
    262 <pre><code>
    263 if (flags & GL_CONTEXT_FLAG_DEBUG_BIT)
    264 {
    265     <function id='60'>glEnable</function>(GL_DEBUG_OUTPUT);
    266     <function id='60'>glEnable</function>(GL_DEBUG_OUTPUT_SYNCHRONOUS); 
    267     glDebugMessageCallback(glDebugOutput, nullptr);
    268     glDebugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, nullptr, GL_TRUE);
    269 } 
    270 </code></pre>
    271 
    272 <p>
    273   Here we tell OpenGL to enable debug output. The <code><function id='60'>glEnable</function>(GL_DEBUG_SYNCRHONOUS)</code> call tells OpenGL to directly call the callback function the moment an error occurred. 
    274 </p>
    275 
    276 <h3>Filter debug output</h3>
    277 <p>
    278   With <fun>glDebugMessageControl</fun> you can potentially filter the type(s) of errors you'd like to receive a message from. In our case we decided to not filter on any of the sources, types, or severity rates. If we wanted to only show messages from the OpenGL API, that are errors, and have a high severity, we'd configure it as follows: 
    279 </p>
    280 
    281 <pre><code>
    282 glDebugMessageControl(GL_DEBUG_SOURCE_API, 
    283                       GL_DEBUG_TYPE_ERROR, 
    284                       GL_DEBUG_SEVERITY_HIGH,
    285                       0, nullptr, GL_TRUE); 
    286 </code></pre>
    287 
    288 <p>
    289   Given our configuration, and assuming you have a context that supports debug output, every incorrect OpenGL command will now print a large bundle of useful data:
    290 </p>
    291 
    292 <img src="/img/in-practice/debugging_debug_output.png" alt="Output of OpenGL debug output on a text console."/>
    293   
    294 <h3>Backtracking the debug error source</h3>
    295 <p>
    296   Another great trick with debug output is that you can relatively easy figure out the exact line or call an error occurred. By setting a breakpoint in <fun>DebugOutput</fun> at a specific error type (or at the top of the function if you don't care), the debugger will catch the error thrown and you can move up the call stack to whatever function caused the message dispatch:
    297 </p>
    298   
    299   <img src="/img/in-practice/debugging_debug_output_breakpoint.png" alt="Setting a breaking and using the callstack in OpenGL to catch the line of an error with debug output."/>    
    300     
    301 <p>
    302   It requires some manual intervention, but if you roughly know what you're looking for it's incredibly useful to quickly determine which call causes an error.
    303 </p>
    304   
    305 <h3>Custom error output</h3>
    306 <p>
    307   Aside from reading messages, we can also push messages to the debug output system with <fun>glDebugMessageInsert</fun>:
    308 </p>
    309 
    310 <pre><code>
    311 glDebugMessageInsert(GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR, 0,                       
    312                      GL_DEBUG_SEVERITY_MEDIUM, -1, "error message here"); 
    313 </code></pre>
    314 
    315 <p>
    316   This is especially useful if you're hooking into other application or OpenGL code that makes use of a debug output context. Other developers can quickly figure out any <em>reported</em> bug that occurs in your custom OpenGL code.
    317 </p>
    318     
    319 <p>
    320   In summary, debug output (if you can use it) is incredibly useful for quickly catching errors and is well worth the effort in setting up as it saves considerable development time. You can find a source code example <a href="/code_viewer_gh.php?code=src/7.in_practice/1.debugging/debugging.cpp" target="_blank">here</a> with both <fun>glGetError</fun> and debug output context configured; see if you can fix all the errors.
    321 </p>
    322 
    323 <h2>Debugging shader output</h2>
    324 <p>
    325   When it comes to GLSL, we unfortunately don't have access to a function like <fun>glGetError</fun> nor the ability to step through the shader code. When you end up with a black screen or the completely wrong visuals, it's often difficult to figure out if something's wrong with the shader code. Yes, we have the compilation error reports that report syntax errors, but catching the semantic errors is another beast.
    326 </p>
    327 
    328 <p>
    329   One frequently used trick to figure out what is wrong with a shader is to evaluate all the relevant variables in a shader program by sending them directly to the fragment shader's output channel. By outputting shader variables directly to the output color channels, we can convey interesting information by inspecting the visual results. For instance, let's say we want to check if a model has correct normal vectors. We can pass them (either transformed or untransformed) from the vertex shader to the fragment shader where we'd then output the normals as follows:
    330 </p>
    331 
    332 <pre><code>
    333 #version 330 core
    334 out vec4 FragColor;
    335 in vec3 Normal;
    336 [...]
    337   
    338 void main()
    339 {
    340     [...]
    341     FragColor.rgb = Normal;
    342     FragColor.a = 1.0f;
    343 }
    344 </code></pre>
    345 
    346 <p>
    347   By outputting a (non-color) variable to the output color channel like this we can quickly inspect if the variable is, as far as you can tell, displaying correct values. If, for instance, the visual result is completely black it is clear the normal vectors aren't correctly passed to the shaders; and when they are displayed it's relatively easy to check if they're (sort of) correct or not:
    348 </p>
    349 
    350 <img src="/img/in-practice/debugging_glsl_output.png" alt="The image of a 3D model with its normal vectors displayed as the fragment shader output in OpenGL for debugging"/>
    351   
    352 <p>
    353   From the visual results we can see the world-space normal vectors appear to be correct as the right sides of the backpack model is mostly colored red (which would mean the normals roughly point (correctly) towards the positive x axis). Similarly, the front side of the backpack is mostly colored towards the positive z axis (blue). 
    354 </p>
    355   
    356 <p>
    357   This approach can easily extend to any type of variable you'd like to test. Whenever you get stuck and suspect there's something wrong with your shaders, try displaying multiple variables and/or intermediate results to see at which part of the algorithm something's missing or seemingly incorrect.
    358 </p>
    359   
    360 <h2>OpenGL GLSL reference compiler</h2>
    361 <p>
    362   Each driver has its own quirks and tidbits; for instance, NVIDIA drivers are more flexible and tend to overlook some restrictions on the specification, while ATI/AMD drivers tend to better enforce the OpenGL specification (which is the better approach in my opinion). The result of this is that shaders on one machine may not work on the other due to driver differences. 
    363 </p>
    364   
    365 <p>
    366   With years of experience you'll eventually get to learn the minor differences between GPU vendors, but if you want to be sure your shader code runs on all kinds of machines you can directly check your shader code against the official specification using OpenGL's GLSL <a href="https://www.khronos.org/opengles/sdk/tools/Reference-Compiler/" target="_blank">reference compiler</a>. You can download the so called <def>GLSL lang validator</def> binaries from <a href="https://www.khronos.org/opengles/sdk/tools/Reference-Compiler/" target="_blank">here</a> or its complete source code from <a href="https://github.com/KhronosGroup/glslang" target="_blank">here</a>.
    367 </p>
    368   
    369 <p>
    370   Given the binary GLSL lang validator you can easily check your shader code by passing it as the binary's first argument. Keep in mind that the GLSL lang validator determines the type of shader by a list of fixed extensions:
    371 <p>
    372   
    373 <ul>
    374   <li><code>.vert</code>: vertex shader.</li>
    375   <li><code>.frag</code>: fragment shader.</li>
    376   <li><code>.geom</code>: geometry shader.</li>
    377   <li><code>.tesc</code>: tessellation control shader.</li>
    378   <li><code>.tese</code>: tessellation evaluation shader.</li>
    379   <li><code>.comp</code>: compute shader.</li>
    380 </ul>
    381   
    382 <p>
    383   Running the GLSL reference compiler is as simple as:
    384 </p>
    385   
    386 <pre><code>
    387 glsllangvalidator shaderFile.vert  
    388 </code></pre>
    389   
    390 <p>
    391   Note that if it detects no error, it returns no output. Testing the GLSL reference compiler on a broken vertex shader gives the following output:
    392 </p>
    393   
    394   <img src="/img/in-practice/debugging_glsl_reference_compiler.png" alt="Output of the GLSL reference compiler (GLSL lang validator) in OpenGL"/>
    395     
    396 <p>
    397   It won't show you the subtle differences between AMD, NVidia, or Intel GLSL compilers, nor will it help you completely bug proof your shaders, but it does at least help you to check your shaders against the direct GLSL specification. 
    398 </p>
    399 
    400 <h2>Framebuffer output</h2>
    401 <p>
    402   Another useful trick for your debugging toolkit is displaying a framebuffer's content(s) in some pre-defined region of your screen. You're likely to use  <a href="https://learnopengl.com/Advanced-OpenGL/Framebuffers" target="_blank">framebuffers</a> quite often and, as most of their magic happens behind the scenes, it's sometimes difficult to figure out what's going on. Displaying the content(s) of a framebuffer on your screen is a useful trick to quickly see if things look correct.
    403 </p>
    404 
    405 <note>
    406    Note that displaying the contents (attachments) of a framebuffer as explained here only works on texture attachments, not render buffer objects.
    407 </note>
    408   
    409 <p>
    410   Using a simple shader that only displays a texture, we can easily write a small helper function to quickly display any texture at the top-right of the screen:
    411 </p>
    412   
    413 <pre><code>
    414 // vertex shader
    415 #version 330 core
    416 layout (location = 0) in vec2 position;
    417 layout (location = 1) in vec2 texCoords;
    418 
    419 out vec2 TexCoords;
    420 
    421 void main()
    422 {
    423     gl_Position = vec4(position, 0.0f, 1.0f);
    424     TexCoords = texCoords;
    425 }
    426   
    427 // fragment shader
    428 #version 330 core
    429 out vec4 FragColor;
    430 in  vec2 TexCoords;
    431   
    432 uniform sampler2D fboAttachment;
    433   
    434 void main()
    435 {
    436     FragColor = texture(fboAttachment, TexCoords);
    437 } 
    438 </code></pre>
    439   
    440 <pre><code>  
    441 void DisplayFramebufferTexture(unsigned int textureID)
    442 {
    443     if (!notInitialized)
    444     {
    445         // initialize shader and vao w/ NDC vertex coordinates at top-right of the screen
    446         [...]
    447     }
    448   
    449     <function id='49'>glActiveTexture</function>(GL_TEXTURE0);  	
    450     <function id='28'>glUseProgram</function>(shaderDisplayFBOOutput);
    451         <function id='48'>glBindTexture</function>(GL_TEXTURE_2D, textureID);
    452         <function id='27'>glBindVertexArray</function>(vaoDebugTexturedRect);
    453             <function id='1'>glDrawArrays</function>(GL_TRIANGLES, 0, 6);
    454         <function id='27'>glBindVertexArray</function>(0);
    455     <function id='28'>glUseProgram</function>(0);
    456 }
    457   
    458 int main()
    459 {
    460     [...]
    461     while (!<function id='14'>glfwWindowShouldClose</function>(window))
    462     {
    463         [...]
    464         DisplayFramebufferTexture(fboAttachment0);
    465         
    466         <function id='24'>glfwSwapBuffers</function>(window);
    467     }
    468 }  
    469 </code></pre>
    470 
    471 <p>
    472   This will give you a nice little window at the corner of your screen for debugging framebuffer output. Useful, for example, for determining if the normal vectors of the geometry pass in a deferred renderer look correct:
    473 </p>
    474   
    475   <img src="/img/in-practice/debugging_fbo_output.png" alt="Framebuffer attachment output to a texture for debugging purposes in OpenGL"/>
    476 
    477 <p>
    478   You can of course extend such a utility function to support rendering more than one texture. This is a quick and dirty way to get continuous feedback from whatever is in your framebuffer(s).
    479 </p>
    480 
    481 <h2>External debugging software</h2>
    482 <p>
    483   When all else fails there is still the option to use a 3rd party tool to help us in our debugging efforts. Third party applications often inject themselves in the OpenGL drivers and are able to intercept all kinds of OpenGL calls to give you a large array of interesting data. These tools can help you in all kinds of ways like: profiling OpenGL function usage, finding bottlenecks, inspecting buffer memory, and displaying textures and framebuffer attachments. When you're working on (large) production code, these kinds of tools can become invaluable in your development process.
    484 </p>
    485     
    486 <p>
    487     I've listed some of the more popular debugging tools here; try out several of them to see which fits your needs the best.
    488 </p>
    489     
    490 <!--<h3>gDebugger</h3>
    491 <p>
    492   gDebugger is a cross-platform and easy to use debugging tool for OpenGL applications. gDebugger sits alongside your running OpenGL application and provides a detailed overview of the running OpenGL state. You can pause the application at any moment to inspect the current state, texture memory and/or buffer usage. You can download gDebugger <a href="http://www.gremedy.com/" target="_blank">here</a>.
    493 </p>
    494     
    495 <p>
    496   Running gDebugger is as easy as opening the application, creating a new project and giving it the location and working directory of your OpenGL executable.
    497 </p>
    498     
    499     <img src="/img/in-practice/debugging_external_gdebugger.png" alt="Image of gDebugger running on an OpenGL application.">
    500 -->      
    501     
    502 <!--<h3>APItrace</h3>
    503 <p>
    504  <a href="https://github.com/apitrace/apitrace" target="_blank">APItrace</a>
    505 </p>-->
    506     
    507 <h3>RenderDoc</h3>
    508 <p>
    509   RenderDoc is a great (completely <a href="https://github.com/baldurk/renderdoc" target="_blank">open source</a>) standalone debugging tool. To start a capture, you specify the executable you'd like to capture and a working directory. The application then runs as usual, and whenever you want to inspect a particular frame, you let RenderDoc capture one or more frames at the executable's current state. Within the captured frame(s) you can view the pipeline state, all OpenGL commands, buffer storage, and textures in use.
    510 </p>
    511       
    512 <img src="/img/in-practice/debugging_external_renderdoc.png" alt="Image of RenderDoc running on an OpenGL application."/>
    513     
    514 <h3>CodeXL</h3>
    515 <p>
    516   <a href="https://gpuopen.com/compute-product/codexl/" target="_blank">CodeXL</a> is GPU debugging tool released as both a standalone tool and a Visual Studio plugin. CodeXL gives a good set of information and is great for profiling graphics applications. CodeXL also works on NVidia or Intel cards, but without support for OpenCL debugging.
    517 </p>
    518   
    519   <img src="/img/in-practice/debugging_external_codexl.png" alt="Image of CodeXL running on an OpenGL application."/>
    520     
    521 <p>
    522   I personally don't have much experience with CodeXL since I found RenderDoc easier to use, but I've included it anyways as it looks to be a pretty solid tool and developed by one of the larger GPU manufacturers.
    523 </p>
    524     
    525 <h3>NVIDIA Nsight</h3>
    526 <p>
    527   NVIDIA's popular <a href="https://developer.nvidia.com/nvidia-nsight-visual-studio-edition" target="_blank">Nsight</a> GPU debugging tool is not a standalone tool, but a plugin to either the Visual Studio IDE or the Eclipse IDE (NVIDIA now has a <a href="https://developer.nvidia.com/nsight-graphics" target="_blank">standalone version</a> as well). The Nsight plugin is an incredibly useful tool for graphics developers as it gives a large host of run-time statistics regarding GPU usage and the frame-by-frame GPU state. 
    528     </p>
    529     
    530 <p>
    531   The moment you start your application from within Visual Studio (or Eclipse), using Nsight's debugging or profiling commands, Nsight will run within the application itself. The great thing about Nsight is that it renders an overlay GUI system from within your application that you can use to gather all kinds of interesting information about your application, both at run-time and during frame-by-frame analysis. 
    532 </p>
    533   
    534   <img src="/img/in-practice/debugging_external_nsight.png" alt="Image of RenderDoc running on an OpenGL application."/>
    535     
    536 <p>
    537   Nsight is an incredibly useful tool, but it does come with one major drawback in that it only works on NVIDIA cards. If you are working on NVIDIA cards (and use Visual Studio) it's definitely worth a shot.
    538 </p>
    539 
    540 <p>
    541   I'm sure there's plenty of other debugging tools I've missed (some that come to mind are Valve's <a href="https://github.com/ValveSoftware/vogl" target="_blank">VOGL</a> and <a href="https://apitrace.github.io/" target="_blank">APItrace</a>), but I feel this list should already get you plenty of tools to experiment with. 
    542 </p>
    543 
    544 <h2>Additional resources</h2>
    545 <ul>
    546   <li><a href="http://retokoradi.com/2014/04/21/opengl-why-is-your-code-producing-a-black-window/" target="_blank">Why is your code producing a black window</a>: list of general causes by Reto Koradi of why your screen may not be producing any output.</li>
    547   <li><a href="https://vallentin.dev/2015/02/23/debugging-opengl" target="_blank">Debug Output in OpenGL</a>: an extensive debug output write-up by Vallentin with detailed information on setting up a debug context on multiple windowing systems.</li>
    548 </ul>       
    549 
    550     </div>
    551     
    552     <div id="hover">
    553         HI
    554     </div>
    555    <!-- 728x90/320x50 sticky footer -->
    556 <div id="waldo-tag-6196"></div>
    557 
    558    <div id="disqus_thread"></div>
    559 
    560     
    561 
    562 
    563 </div> <!-- container div -->
    564 
    565 
    566 </div> <!-- super container div -->
    567 </body>
    568 </html>